Unit-V

Sec:29 Local compactness

Definition:

A space X is said to be locally compact at x if there is some compact susbspace C of X that contains a neighbourhood of x. If X is locally compact at each of its point, then X is said to be locally compact.

Theorem: 29.1

Let X be a space. Then X is locally compact Hausdorff space iff there exist a space Y satisfying the following conditions.

- (i) X is a subspace of Y
- (ii) The set Y-X consist of a single point
- (iii) Y is a compact Hausdorff space

If Y and Y are two space satisfying these conditions, then there is a homeomorphism of Y with Y that equals the identity map on X.

Proof:

Step:1

First we prove the uniqueness

Let Y and Y be two spaces satisfying these conditions.

Define h: $Y \rightarrow Y$ by letting h maps the single point p of Y-X to the point q of Y -X and letting h equal the identity on X.

We have to show that if U is open in Y then h(U) is open in Y.

This implies that h is that h is the homeomorphism.

Case(i)

Suppose p doesn't belongs to U

Then h(U) = U [since h is a identity map]

Since \mho is open in Y and it contained in X, \mho is open in X

Also since X is open in Y we have U is open in Y . Hence h(O) is open in Y

Case(ii)

Suppose p ∈ ℧

Let C = Y-U. Then C is closed in Y

Since Y is compact, we have C is a compact subspace of Y.

Since C is contained in X, It is a compact subspace of X. Also since X is a subspace of Y', the space c is also a compact subspace of Y'

- : C is closed in Y
- ∴Y -C is open in Y'
- ∴h(℧) is open in Y

Step: 2

Suppose X is locally compact Hausdorff space. Take some object that is not a point of X denote it by the symbol ∞

Let
$$Y = X \cup \{\infty\}$$

Define a collection of open set of Y to consist of type(i) all sets U that are open in X and type(ii) all sets of the form Y-C, where C is a compact subspace of X ------ ①

We shall show that the collection (1) is a topology

The empty set is the set of type(i) and space Y is the set of type (ii)

Now, Checking that the intersection of two open sets in open involves 3 cases.

Case(i) $U_1 \cap U_2$ is of type (i)

Case (ii) $(Y-C_1) \cap (Y-C_2) = Y-(C_1 \cap C_2)$ is of type (ii)

Case (iii) $U_1 \cap (Y-C_1) = U_1 \cap (X-C_1)$ is of type (i) because of C_1 is closed in X

Now, We check the union of any collection of open sets is open.

(i) $UU \alpha = U$ is open in X and is of type (i)

(ii) \cup (Y-C β) = Y- \cap C β = Y-C is of type (ii)

(iii) $(\cup \nabla \alpha) \cup (\cup (Y - C\beta)) = \nabla \cup (Y - C) = Y - (C - U)$ is of type(ii)

Since C-U is a closed subspace of C, we have C-U is compact

Hence (1) is a topology on Y

Next, we have to show that X is a subspace of Y, we show its intersection with X is open in X.

If U is of type(i), then ℧∩X =℧

If Y-C is of type (ii), then $(Y-C) \cap X = X-C$

In both cases the sets are open inX.

Conversely,

Any set open in X is a set of type(i) and therefore open in Y

∴ X is a subspace of Y.

Now, we show that Y is compact

Let A be an open covering of Y

The collection ♠ must contain an open set of type(ii) say Y-C, Since none of the open sets of type (i) contain the point ∞

Take all the members of A different from Y-C and intersects them with X, they form a collection of open sets of X covering C.

Since C is compact, finitely many of them cover C

The corresponding finite collection of elements of A along with the elements Y-C, cover all of Y

Hence Y is compact

Next, we show that Y is Hausdorff

Let x,y be two points of Y

If both of them lie in x, there are disjoint sets U and V open in X containing x and y respectively. Since X is Hausdroff

On the otherhand, If $x \in X$, $y = \infty$

We can choose a compact set C is X containing a neighbourhood U of X.

Then U and Y-C are disjoint neighbourhood of x and ∞

Hence Y is Hausdroff.

Step:3

Now, we prove the converse

suppose a space Y satisfying the condition (i),(ii),(iii) exists

Since Y is Hausdroff, X is Hausdroff

Let $x \in X$

We have show that X is locally compact at x

Choose disjoint open sets U and V of Y containing x and the single point of Y-X respectively.

Then the set C = Y-V is closed in Y, so it a compact subspace of Y.

Since C lies in X, it is also a compact subspace of X.

Also C contains the neighbourhood U of x.

Hence X is locally compact

∴ X is locally compact Hausdroff.

Definition:

If Y is compact Hausdorff space and X is a proper subspace of Y whose closure equals Y, then Y is said to be compactification of X. If Y - X equals a single point, then Y is called the one point compactification of X.

Theorem 29.2

Let X be a Hausdorff space. Then X is locally compact iff given x in X and given a neighbourhood U of x, there is a neighbourhood V of x such that \overline{V} is compact and $\overline{V}CU$

Proof:

Assume that given $x \in X$ and given neighbourhood U of x there is a neighbourhood V of x such that \overline{V} is compact and $\overline{V}CU$.

Since $x \in VC\overline{V}$, the set $C=\overline{V}$ is the required compact subspace of X containing a neighbourhood V of x.

Hence X is locally compact.

Conversely,

Assume that X is locally compact.

Let $x \in X$.

Let U be a neighbourhood of x.

Take the one point compactification Y of X.

Let C = Y - U.

Then C is closed in Y.

Hence C is compact subspaces of Y (Since Y is compact Hausdroff space)

Choose disjoint open sets V and W containing x and c respectively. Then the closure \overline{V} of V in Y is compact.

Also, \overline{V} is disjoint from C.

We have $\overline{V}CC^c=U$

Thus, $\overline{V}CU$

Corollary 29.3

Let X be locally compact Hausdorff and let A be a subspace of X. A is closed or open in X. Then A is locally compact.

Proof:

Suppose A is closed in X.

To prove A is locally compact.

Let $x \in A$.

Let C be a compact subspace of X containing the neighbourhood U of x in X. (Since X is locally compact)

Then $C \cap A$ contains the neighbourhood $U \cap A$ of x in A.

Hence A is locally compact.

Section 28 Limit Point Compactness

Definition:

A space X is said to be limit point compact if every infinite subset of X has a limit point.

Theorem 28.1 Compactness implies limit point compactness, but not conversely.

Proof:

Let X be a compact space. Let A be a subset of X. We have to prove that if A is infinite, then A has a limit point. We prove the this by contra positive method ie) If A has no limit point, then A must be finite.

Suppose A has no limit point. Then A contain all its limit points, so that A is closed. For each $a \in A$, we can choose a neighbourhood U_a of a such that U_a intersects A in the point a alone. The space X is coveted by the open set X - A and the open sets U_a . Since X is compact, it can be covered by finitely many of this sets. Since X - A does not intersect A and each set U_a contains only one point of A.

Hence the set A must be finite.

Definition:

Let X be a topological space. If (x_n) is a sequence of points of x and if $n_1 < n_2 < \dots < n_i < \dots$ is an increasing sequence of positive integers, then the sequence (y_i) defined by setting $y_i = x_{ni}$ is called a subsequence of the sequence (x_n) . The space X is said to be sequentially compact if every sequence of points of X has a convergent subsequence.

Theorem 28.2

Let X be a metrizable space. Then the following conditions are equivalent (i) X is compact (ii) X is limit point compact (iii) X is sequentially compact

Proof:

$$(i) \rightarrow (ii)$$

Let X be a compact space. Let A be a subset of X. We have to prove that if A is infinite, then A has a limit point. We prove the this by contra positive method ie) If A has no limit point, then A must be finite.

Suppose A has no limit point. Then A contain all its limit points, so that A is closed. For each $a \in A$, we can choose a neighbourhood U_a of a such that U_a intersects A in the point a alone. The space X is coveted by the open set X - A and the open sets U_a . Since X is compact, it can be covered by finitely many of this sets. Since X - A does not intersect A and each set U_a contains only one point of A.

Hence the set A must be finite.

$$(ii) \rightarrow (iii)$$

Assume X is limit point compact. To prove X is sequentially compact. Let sequence (x_n) be a point of X. Consider the set $A = \{x_n \mid n \in Z_+\}$

Case (i): Suppose A is finite

Then there is a point x such that $x=x_n$ for infinitely many values of n. In this case, the sequence (x_n) has a subsequence that is constant and converges obviously.

Case (ii): Suppose A is infinite

Then A has an limit point of x. We define a subsequence of sequence (x_n) coverging to x as follows:

First choose n_1 , so that $x_{n_1} \in B(x,1)$. Then choose n_2 , so that $x_{n_2} \in B(x,\frac{1}{2})$, and so on.

Then choose n_i , so that $x_{n_i} \in B(x, \frac{1}{i})$, and so on.

Then the subsequence $(x_{n_1}, x_{n_2}, \dots, x_{n_i}, \dots) \to x$

Thus X is sequentially compact.

$$(iii) \rightarrow (i)$$

Assume that X is sequentially compact.

To prove X is compact.

If X is sequentially compact, then the lebesgue number lemma holds for X. Let A be an open covering of X. We assume that there is no $\delta > 0$ such that each set of diameter less than δ has an element of A containing it, and derive a contradiction. (Since, Let A be an open covering of the metric space (X,d). If X is compact, then there is a $\delta > 0$ such that for each subset of X having diameter less than δ , there exists a element of A containing it. The number δ is called a lebesgue number for the covering A)

Our assumption implies inparticular that for each positive integer n, there is a set of diameter less than $\frac{1}{n}$ that is not contained in any element of A.

Let C_n be such a set. Choose a point $x_n \in C_n$, for each n. By hypothesis, some subsequence (x_{n_i}) of the sequence (x_n) converges to the point 'a' (say).

Now, 'a' belongs to some element A of the collection A, because A is open, we may choose an $\varepsilon>0$ such that B(a, ε)contained in A. If i is large enough that $\frac{1}{n_i} < \frac{\varepsilon}{2}$, then the set C_{n_i} lies in the $\frac{\varepsilon}{2}$ neighbourhood of x_{n_i} . If i is also choose an large enough that $d(x_{n_i}, a) < \frac{\varepsilon}{2}$, then $\frac{\varepsilon}{2}$ lies in the ε neighbourhood of 'a'.

But this means that C_{n_i} contained in A, contrary to hypothesis.

We show that if X is sequentially compact, then given ε >0 there is a finite covering of X by open ε balls.

Once again we proceed by contradiction. Assume that there is an ε >0 such that X cannot be covered by finitely many ε balls. Construct a sequence of points x_n of X as follows; First choose x_1 to . be any point of X. Nothing that the ball $B(x_1,\varepsilon)$ is not all of X. (Otherwise X would be covered by a single ε balls); Choose x_2 to be a point of X not in $B(x_1,\varepsilon)$; and so on.

In general, given x_1, x_2, \ldots, x_n , choose x_{n+1} to be a point not in the union $B(x_1, \varepsilon)UB(x_2, \varepsilon)U....UB(x_n, \varepsilon)$, using the fact that these balls do not cover X. Note that by construction $d(x_{n+1}, x_i) > \varepsilon$ for i=1 to n. Thus the sequence (x_n) have no convergent subsequence, infact, any ball of radius $\frac{\varepsilon}{2}$ that contain x_n atmost one value of n.

Finally, we show that if X is sequentially compact, then X is compact.

Let A be an open covering of X. Since X is sequentially compact, the open covering A has a lebesgue number δ . Let $\epsilon = \frac{\delta}{3}$. Since X is sequentially compact, to find a finite covering of X by open ϵ balls. Each of these balls has diameter atmost $\frac{2\delta}{3}$, so it lies in an element of A. Choosing one such element of A for each of these ϵ balls, we obtain a finite subcollection of A that covers X. Hence X is compact.