Unit-V
Sec:29 Local compactness
Definition:

A space Xis said to be locally compact at x if there is some compact susbspace C of X that
contains a neighbourhood of x. If X is locally compact at each of its point, then X is said to be locally
compact.

Theorem: 29.1

Let X be a space. Then X is locally compact Hausdorff space iff there exist a space Y satisfying
the following conditions.

(i) X is a subspace of ¥
(i) The set Y-X consist of a single point
(iii) Y is a compact Hausdorff space

If Yand Y are two space satisfying these conditions, then there is a homeomorphism of Y with Y '
that equals the identity map on X.

Proof:
Step:1
First we prove the uniqueness
LetYandY be two spaces satisfying these conditions.

Defineh: Y > Y’ by letting h maps the single point p of Y-X to the point ¢ of Y "X and letting h
equal the identity on X.

We have to show that if U is open in Y then h(U) is open in Y.
This implies that h is that h is the homeomorphism.
Caseli)
Suppose p doesn’t belongsto U
Then h(D) = U [since h is a identity map]
Since U isopen in Y and it contained in X,U is openin X
Also since X is open in Y we have U is openin Y'. Hence h(TU) is open in Y
Caselii)

Supposep € U
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Let C=Y-U. Then CisclosedinyY
Since Y is compact, we have C is a compact subspace of Y.

Since C is contained in X, It is a compact subspace of X. Also since X is a subspace of Y/, the space c is
also a compact subspace of Y

~CisclosedinY
~Y =Cis openinY’
~h(0) isopeninY

Step: 2

Suppose X is locally compact Hausdorff space. Take some object that is not a point of X denote
it by the symbol oo

Let Y = XU{oo}

Define a collection of open set of Y to consist of type(i) all sets U that are open in X and type(ii) all
sets of the form Y-C, where C is a compact subspace of X ----------------- @

We shall show that the collection @ is a topology
The empty set is the set of type(i) and space Y is the set of type (ii)
Now, Checking that the intersection of two open sets in open involves 3 cases.
Case(i) UinU; is of type (i)
Case (i) (Y-Cy) n (Y-C3) = Y- (C1nCy) is of type (ii)
Case (iii) Ujn(Y-C;) = U;n(X-C,) is of type (i) because of C; is closed in X
Now, We check the union of any collection of open sets is open.
() UU @ =Uis openin X and is of type (i)
(i) U(Y-C B) = Y-nCP = Y-Cis of type (ii)
(i) (UDa) U (U(Y—=CB)) = OU (Y -C) =Y-(C-U) is of type(ii)
Since C-Uis a closed subspace of C, we have C-U is compact
Hence @ is a topology on Y
Next, we have to show that X is a subspace of Y, we show its intersection with X is open in X.

If U is of type(i), then UNX =0
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If Y-C is of type (ii), then (Y-C) NX = X-C
In both cases the sets are open inX.

Conversely,
Any set open in X is a set of type(i) and therefore openinY
- Xis asubspace of Y.

Now, we show that Y is compact

Let & be an open covering of Y

The collection & must contain an open set of type(ii) say Y-C, Since none of the open sets of type (i)
contain the point co

Take all the members of & different from Y-C and intersects them with X, they form a collection
of open sets of X covering C.

Since C is compact, finitely many of them cover C
The corresponding finite collection of elements of & along with the elements Y-C, cover all of Y
Hence Y is compact
Next, we show that Y is Hausdorff
Let x,y be two points of Y

If both of them lie in x, there are disjoint sets U and V open in X containing x and y respectively. Since
X is Hausdroff

On the otherhand, If x€X, y=00
We can choose a compact set C is X containing a neighbourhood U of X.
Then U and Y-C are disjoint neighbourhood of x and co
Hence Y is Hausdroff.
step:3
Now, we prove the converse
suppose a space Y satisfying the condition (i), (ii),(iii) exists
Since Y is Hausdroff, X is Hausdroff

Let x €X
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We have show that X is locally compact at x
Choose disjoint open sets U and V of Y containing x and the single point of Y-X respectively.
Thenthe set C=Y-Vis closedin Y, so it a compact subspace of Y.
Since Cliesin X, it is also a compact subspace of X.
Also C contains the neighbourhood U of x.
Hence X is locally compact

- X is locally compact Hausdroff.
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Definition:

If Y is compact Hausdorff space and X is a proper subspace of Y whose closure equals Y,
then Y is said to be compactification of X. If Y — X equals a single point, then Y is called the one
point compactification of X.

Theorem 29.2

Let X be a Hausdorff space. Then X is locally compact iff given x in X and given a
neighbourhood U of x, there is a neighbourhood V of x such that V is compact and VCU

Proof:

Assume that given xeX and given neighbourhood U of x there is a neighbourhood V of x such
that V is compact and VCU.

Since x€VCV, the set C=V is the required compact subspace of X containing a neighbourhood V of x.
Hence X is locally compact.
Conversely,
Assume that X is locally compact.

Let xeX.
Let U be a neighbourhood of x.
Take the one point compactification Y of X.
LetC=Y-U.
Then Cis closed in Y.

Hence C is compact subspaces of Y (Since Y is compact Hausdroff space)

Choose disjoint open sets V and W containing x and c respectively. Then the closure V of Vin Y
is compact.

Also, Vis disjoint from C.
We have VC C¢=U
Thus, VCU

Corollary 29.3

Let X be locally compact Hausdorff and let A be a subspace of X. A is closed or open in X.
Then A is locally compact.

Proof:
Suppose A is closed in X.
To prove A is locally compact.

Let xeA.
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Let C be a compact subspace of X containing the neighbourhood U of x in X. (Since X is locally
compact)

Then CNA contains the neighbourhood UNA of x in A.
Hence A is locally compact.
Section 28§ Limit Point Compactness
Definition:
A space X is said to be limit point compact if every infinite subset of X has a limit point.
Theorem 28.1 Compactness implies limit point compactness, but not conversely.
Proof:

Let X be a compact space. Let A be a subset of X. We have to prove that if A is infinite, then A has a
limit point. We prove the this by contra positive method ie) If A has no limit point, then A must be
finite.

Suppose A has no limit point. Then A contain all its limit points, so that A is closed. For
each acA, we can choose a neighbourhood U, of a such that U, intersects A in the point a alone. The
space X is coveted by the open set X — A and the open sets U,. Since X is compact, it can be covered
by finitely many of this sets. Since X — A does not intersect A and each set U, contains only one
point of A.

Hence the set A must be finite.

Definition:
Let X be a topological space. If (x,,) is a sequence of points of x and if ny <n; < ... ... <
n; < ...... Is an increasing sequence of positive integers, then the sequence (y;) defined by setting

¥i=Xp; is called a subsequence of the sequence (x,,). The space X is said to be sequentially compact
if every sequence of points of X has a convergent subsequence.

Theorem 28.2

Let X be a metrizable space. Then the following conditions are equivalent (i) X is compact
(ii) X is limit point compact (iii) X is sequentially compact

Proof:
(i) — (i)

Let X be a compact space. Let A be a subset of X. We have to prove that if A is infinite, then A has a
limit point. We prove the this by contra positive method ie) If A has no limit point, then A must be
finite.

Suppose A has no limit point. Then A contain all its limit points, so that A is closed. For
each acA, we can choose a neighbourhood U, of a such that U, intersects A in the point a alone. The
space X is coveted by the open set X — A and the open sets U,. Since X is compact, it can be covered
by finitely many of this sets. Since X — A does not intersect A and each set U, contains only one
point of A.

Hence the set A must be finite.

(i) — (iii)
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Assume X is limit point compact. To prove X is sequentially compact. Let sequence (x,,) be a point
of X. Consider the set A= {x,, | neZ, }

Case (i): Suppose A is finite

Then there is a point X such that x=x,, for infinitely many values of n. In this case, the sequence
(x,,) has a subsequence that is constant and converges obviously.

Case (ii): Suppose A is infinite

Then A has an limit point of x. We define a subsequence of sequence (x,,) coverging to x as
follows:

i 1
First choose n,, so that x,, € B(x,1). Then choose n,, so that x,, € B(x,; ), and so on.

1
Then choose n;, so that X, € B(x. ?), and so on.

Then the subsequence (x;,, Xn,,- .. ... s Xngs--- ) = X

Thus X is sequentially compact.

(iii) — (i)

Assume that X is sequentially compact.
To prove X is compact.

If X is sequentially compact, then the lebesgue number lemma holds for X. Let A be an open
covering of X. We assume that there is no >0 such that each set of diameter less than & has an
element of A containing it, and derive a contradiction. (Since, Let A be an open covering of the
metric space (X.d). If X is compact, then there is a >0 such that for each subset of X having
diameter less than 6, there exists a element of A containing it. The number 8 1s called a lebesgue
number for the covering A)

Our assumption implies inparticular that for each positive integer n, there is a set of diameter
1 . . .
less than N that is not contained in any element of A.

Let C, be such a set. Choose a point x,€ C,, for each n. By hypothesis, some subsequence
(x,,) of the sequence (x,,) converges to the point ‘a’ (say).

Now, ‘a’ belongs to some element A of the collection A, because A is open, we may choose an £>0
M - 1 -
such that B(a,e)contained in A. If i is large enough that o <§ , then the set €, lies in the %

neighbourhood of x;,, . If i is also choose an large enough that d(x,, ,a)< g . then % lies in the &
neighbourhood of “a’.

But this means that (;,, contained in A, contrary to hypothesis.

We show that if X is sequentially compact, then given £>0 there is a finite covering of X by open ¢
balls.

Once again we proceed by contradiction. Assume that there is an £>0 such that X cannot be
covered by finitely many ¢ balls. Construct a sequence of points x,, of X as follows; First choose x;
to. be any point of X. Nothing that the ball B(xy.¢) is not all of X. (Otherwise X would be covered
by a single £ balls); Choose x; to be a point of X not in B(x,,¢); and so on.
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In general, given x4,X,,... ... X, choose x, 4, to be a point not in the union
B(x,,6)UB(x5,6)U... . .UB(x,.€), using the fact that these balls donot cover X. Note that by
construction d(x,+1,%;)>€ for i=1 to n. Thus the sequence (x,) have no convergent subsequence,
infact, any ball of radius % that contain x,, atmost one value of n.

Finally, we show that if X is sequentially compact, then X is compact.
Let A be an open covering of X. Since X is sequentially compact, the open covering A has a
lebesgue number &. Let E‘:g. Since X is sequentially compact, to find a finite covering of X by open ¢

balls. Each of these balls has diameter atmost %, so it lies in an element of A. Choosing one such

element of A for each of these € balls, we obtain a finite subcollection of A that covers X. Hence X is
compact.
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